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LETTER TO THE EDITOR 

Solution of an oscillator multiplicative stochastic equation 
as an ordering problem 

K W6dkiewicz 
Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, 
USA and t Institute of Theoretical Physics, Warsaw University, Warsaw 00-681, Poland 

Received 26 August 1983 

Abstract. An exact solution, compact in form, for the evolution operator of a harmonic 
oscillator driven by an external chaotic electric field is obtained. It is shown that using the 
harmonic description of the Ornstein-Uhlenbeck stochastic process, the evolution operator 
can be calculated explicitly from a normal ordering problem of certain Bose creation and 
annihilation operators. 

Physical problems with external noise and fluctuations lead very often to stochastic 
equations with external multiplicative Ornstein-Uhlenbeck stochastic processes. 
Usually these equations are very difficult to treat because of the non-white character 
of the fluctuations involved in the problem. 

In this paper we give an exact solution and, what is very important, one that is 
compact in form, for a harmonic oscillator 

~ = w , , a + a + 8 * ( t )  eiw'u+8(t)  e-'"'a+++8*(t)8(t) (1) 
driven by an external near-resonant Gaussian chaotic electric field described by two 
complex amplitudes s(t)  and %*(t )  ( E  is a coupling constant singled out only for 
convenience). We obtain a closed form solution for the evolution operator of the 
harmonic oscillator, averaged statistically over the Ornstein-Uhlenbeck fluctuations 
of the external electric field defined by the following two-point correlation function: 

( %( t )  8*( t ' ) )  = (r/ 7,) exp( -1 r - r ' l /  7,). (2) 
For such a stochastic problem different techniques have been developed based on 

cumulant expansions (Fox 1979) or path integration methods (KuS ef a1 1983). All 
these methods lead in general to quite complicated and involved calculations. 

Following the harmonic description of the Ornstein-Uhlenbeck stochastic process 
(W6dkiewicz and Zubairy 1983), we can reduce the solution of the chaotic oscillator 
to an ordering problem of certain proper boson creation and annihilation operators. 
Writing the evolution operator in the form exp(-iwfa+u) U ( t ) ,  we obtain for the 
Hamiltonian given by (1) the following operator-valued stochastic equation: 

io = (Au'a + %*a + %a++ &%*€?)U (3) 
where A = wQ - U. 

t Permanent address. 
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The complex chaotic electric field can be decomposed into two statistically indepen- 
dent stochastic processes x1 and x2: 8 = x1 + ixz. The real Ornstein-Uhlenbeck stochas- 
tic processes x, can be described by Langevin equations with white-noise additive 
driving terms F, : 

X I  = -T,~x, + F,, i = l , 2 ,  (4) 

(F,( c)F,( t ' ) )  = a,( 2r/ ~f ) S( t - r ' ) .  
with 

The stochastic expectation value of the evolution operator U can be calculated 
from the following auxiliary quantity: 

g( t ,  tl, 6 2 )  = exp(t?r/27,) exp(t:r/27c)(eXp(i61Xl(t)) exp(i62x2(t)) U ( [ ) )  ( 5 )  

(6) 

by simply putting parameters 8, and equal to zero: 

( U t ) )  = g(t ,  5 1 7  52)1*1=&=o. 

Now an exact equation of motion for g can be derived differentiating (5) with respect 
to time. With the help of (1)  and (4) we transform multiplications by the noise x,(  t )  
into 8/86, derivatives, and according to the well known standard methods (Doob 1967) 
average over the white noise F,, i.e. the only stochastic element left in our equation. 
As a result we obtain the equation 

(7) 

(8) 
and b =-iA-r,' -4iT&/rC. The 6 x 6  matrix B=lp,YI is given by the following 
definitions: 

g = (ATBA + b)g 

A =(a ,  ala519 a/a52; a+, 6 1 , 6 2 1  

where the operator-valued vector A is defined as follows: 

0 1 0 -1 t i  

a =  1;: i E  01, p = g l l  (ir/rc)E b 1,  
I *  

21 0 iE i 0 (iT/r,)E 

I -iT/ -iA rc 0 

-1 -i 
(9) Y =1  T i r c  - 1 / r c - ( 2 i ~ / r c ) ~  0 

- 1/ rc - (2iT/ rC) E 

From the definition ( 5 )  we check that (7) has the following initial condition: 

g(t ,  61,52) l r=o = 1. (10) 
If we introduce the operators a, = 8/86, and a: = t,, we check that [a,, a:]  = S,, i.e. 

boson commutation relations are satisfied leading to 

This commutator of the operator-valued components of the vector A has an obvious 
symplectic structure. 

From the initial condition (9) we conclude that operators ai acting on the right 
give zero and operators a t  acting on the left give zero due to the property (6). This 
means that the stochastic average of the evolution operator is simply equal to the 
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vacuum expectation value (vacuum with respect to boson operator ai only) of g given 
by (71, i.e. 

( U (  t ) )  = eb'(Ol exp(ATBAt)lO). (12) 

The calculation of this vacuum expectation value can be easily achieved by normally 
ordering all the boson operators entering in the expression (12). This ordering can 
be done exactly due to the bilinear structure on the creation and annihilation operators 
of the exponent in (12) (Berezin 1966, Wilcox 1967, Agrawal and Mehta 1977). As 
a result we obtain 

( U ( t ) )  = f ( t ) :  exp(AzBT(t)Ao) (13) 

where 

A. = (a ,  0,O; a+, O , O ) ,  

T ( t )  =[sinh(B,t)/B,]F-' ( t ) ,  

F (  t )  = cosh( B,t) + I;* sinh(B,t), (156) 

f( t )  = ebf (det F (  ?))-"*, ( 1 5 ~ )  

with the notation B, = 1-9 * B. 
The closed-form solution given by (13) is the main result of this paper. 
This formula can be simplified further by performing a symplectic transformation 

S,  i.e. a transformation leaving the relation ( 1  1) unchanged and diagonalising BT, i.e. 

STBTS=lA O A  o 1  
where A is a diagonal matrix. As a result of such a transformation we can write 

( U (  t ) )  = f( t ) :  exp(g( t)a+a> := f (  t )  exp(ln)g( t )  + 1 la+a), (17) 
where we have used the known relation exp(6aca) =: exp[(es - l)a'a]: (Wilcox 1967) 
and the function g(t)  is obtained as a result of the symplectic transformation (16). 
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